NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis
نویسندگان
چکیده
Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signaling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signaling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild-type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signaling pathways of both nodulation and in AM symbiosis.
منابع مشابه
Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis.
The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleava...
متن کاملGrowth and some physiological characteristics of alfalfa (Medicago sativa L.) in response to lead stress and Glomus intraradices symbiosis
Lead is a nonessential element that has a negative effect on plant growth and development. Plant symbiosis with arbuscular mycorrhizal fungi (AMF) in soils contaminated with heavy metals can affect growth of plant, nutrition and tolerance against heavy metals. In this study, the effect arbuscular mycorrhizal fungi Glomus intraradices on the growth, photosynthetic pigments, protein content, prol...
متن کاملEnhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrast...
متن کاملSymbiosis relationship between some arbuscular mycorrhizal fungi (AMF) and Salsola laricina and its effect on improving plant growth parameters
The aim of this study was to examine the symbiosis relationshipbetween some arbuscular mycorrhizal fungi (AMF) and Salsola laricina (Chenopodiaceae), a non-mycotrophic plant speciesand its effect on improving plant growth parameters. Initially, the development of AMF density was monitored through two parameters including evaluation of mycorrhizal colonization of plant roots and density measurem...
متن کاملPhosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles.
In response to the colonization by arbuscular mycorrhizal (AM) fungi, plants reprioritize their phosphate (Pi)-uptake strategies to take advantage of nutrient transfer via the fungus. The mechanisms underlying Pi transport are beginning to be understood, and recently, details of the regulation of plant and fungal Pi transporters in the AM symbiosis have been revealed. This review summarizes rec...
متن کامل